Data Pre-Processing for Ecosystem Behavior Analysis

NATALYA REZOVA, LEV KAZAKOVTSEV, GUZEL SHKABERINA, DENIS DEMIDKO, ANDREY GOROSHKO

The most common data quality problems*

- incompleteness: the data does not contain attributes, or values are missing;
- noise: data contains erroneous records or outliers;
- inconsistency: data contains conflicting records or discrepancies.

*J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques. Third Edition, Morgan Kaufmann Publishers, 2011

The most common data preprocessing methods

- processing of missing values;
- data normalization;
- data discretization;
- dimensionality reduction;
- cleaning text fields.

Previous studies

- 1. J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques. Third Edition, Morgan Kaufmann Publishers, 2011.
- 2. A. Jain, R. Dubes, Algorithms for Clustering Data. Prentice-Hall: New Jersey, USA, 1988, P. 320.
- 3. D. Chicco, "Ten quick tips for machine learning in computational biology" in BioData Mining, vol. 10(35), 2017.
- 4. Sh Wu., "A review on coarse warranty data and analysis", in Reliability Engineering & System Safety, vol. 114, pp. 1-11.
- 5. S. García, S. Ramírez-Gallego, J. Luengo, "Big data preprocessing: methods and prospects" in Big Data Analysis, vol. 1(9), 2013.
- 6. H.J. Jeong, K.S. Park, Y.G. Ha, "Image Preprocessing for Efficient Training of YOLO Deep Learning Networks", IEEE International Conference on Big Data and Smart Computing (BigComp), 2018, pp. 635-637.
- 7. H.C. Lu, E.W. Loh, S.C. Huang, "The Classification of Mammogram Using Convolutional Neural Network with Specific Image Preprocessing for Breast Cancer Detection", 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD), 2019, pp. 9-12.
- 8. D. Tuia, B. Kellenberger, S. Beery et al. "Perspectives in machine learning for wildlife conservation" in Nature Communications, vol. 13(792), 2022.

The main problem

 Development an ecosystem of predictive analytics for the occurrence of outbreaks of mass reproduction of the Siberian silk moth

Data preprocessing problem

• Reduction in the number of input characteristics without loss of forecast accuracy

• n=15523 forest compartments $FS = \{FS_1, FS_2, ..., FS_i, ..., FS_n\}$

1996	8	13	69	0	0 5П1E1K2П1Л	7	1	1	0	0	1	0	0	0	0 6	60	4	13	14	0,9	140 XB3M	ВЛА		63,5	1
1996	9	8	94	0	0 4ПЗЕЗЛ	4	3	3	0	0	0	0	0	0	0 15	50	3	24	26	0,7	228 XB3M	BЛA		58,6	1
1996	9	9	84	0	0 4П2ЕЗЛ1К	4	2	3	0	0	1	0	0	0	0 15	50	4	22	24	0,6	220 XB3M	BЛA		3,2	0
1996	10	7	37	0	0 4Л3П2Е1К	3	2	4	0	0	1	0	0	0	0 22	20	4	27	40	0,6	240 EP3M	CBE)		3,9	0
1996	11	7	73	0	0 8E2E	8	2	0	0	0	0	0	0	0	0 7	'5	3	17	16	0,9	223 NNKT	CBE)		480,7	1
1996	13	5	221	0	0 5П2Л2П1К	7	0	2	0	0	1	0	0	0	0 18	30	3	24	24	0,8	340 XB3M	ВЛА)		7	0
1996	14	3	78	0	0 6FI3E1K	6	3	0	0	0	1	0	0	0	0 16	60	4	21	22	0,6	190 XBKT	ВЛА		1,9	0
1996	14	4	56	0	0 5E3П2K	3	5	0	0	0	2	0	0	0	0 15	50	3	23	24	0,9	350 XB3M	ВЛА		5,2	0
1996	14	5	128	0	0 5Е2Л2П1К	2	5	2	0	0	1	0	0	0	0 18	30	3	24	24	0,8	340 XB3M	ВЛА		11,3	0
1996	15	8	57	0	0 5E3П2K	3	5	0	0	0	2	0	0	0	0 17	' 0	4	21	22	0,8	110 XB3M	BЛA		4,6	0
1996	15	11	24	0	0 8E1K1OC	0	8	0	0	1	1	0	0	0	0 16	50	3	23	24	0,8	310 XB3M	ВЛА)		3,5	0
1996	15	20	208	0	0 4ПЗЕ2Л1К	4	3	2	0	0	1	0	0	0	0 16	50	3	23	24	0,8	230 XBKT	BЛA		4.4	0
1996	19	11	192	0	0 4ЕЗЛ1К2Б	0	4	3	2	0	1	0	0	0	0 10	00	4	18	18	0,8	230 XB3M	ВЛА		3.6	0
1996	19	16	40	0	0 3Е2П2Л1К2Б	2	3	2	2	0	1	0	0	0	0 10	00	4	18	18	0,8	230 XB3M	CBE)		2.5	0
1996	21	7	57	0	0 4E2П2OC1К1Л	2	4	1	0	2	1	0	0	0	0 15	50	4	22	24	0,7	290 XB3M	CBE)		8	0
1996	21	11	9	0	0 5E2П2OC1Л	2	5	1	0	2	0	0	0	0	0 15	50	4	22	22	0,7	270 XB3M	CHP.		20.3	0
1996	22	1	91	0	0 ЗЕЗП2ОС1Л1К	3	3	1	0	2	1	0	0	0	0 15	55	4	22	24	0,7	290 OCPT	ВЛА		4.8	0
1996	22	2	110	0	0 3E2П1Л4ОС	2	3	1	0	4	0	0	0	0	0 16	50	4	22	24	0,7	290 XB3M	ВЛА)		9.3	0
1996	22	5	29	0	0 5E2П2OC1K	2	5	0	0	2	1	0	0	0	0 16	50	4	22	24	0,7	270 XB3M	BЛA		18	0
1996	23	3	65	0	0 2E2П2Л1C3OC	2	Ê	2	0	3	0	1	0	0	0 16	50	4	22	24	0,7	290 XB3M	ВЛА)		0.3	0
1996	24	4	294	0	0 4E2П1К1E1Л1ОС	2	5		0	1	1	0	0	0	0 14	10	4	22	26	0,7	290 XB3M	CBE)		0.3	0
1996	24	19	171	0	0 4Л2К2Е2П	2	2	4	0	0	2	0	0	0	0 20	00	3	23	26	0,6	220 6P3M	CBE)		3 3	0
1996	24	21	58	0	0 ЗЕЗП2Л1К1Б	3	3	2	1	0	1	0	0	0	0 17	'0	4	22	24	0,7	270 XB3M	ВЛА		3.4	0
1996	37	8	27	0	0 5FI2E35	5	2	0	3	0	0	0	0	0	0 8	80	4	16	16	0,8	180 XB3M	ВЛА		65.6	1
1996	38	17	16	0	0 2Е2П2Л4Б	2	2	2	4	0	0	0	0	0	0 6	50	2	18	18	0,7	190 OCPT	ВЛА)		10.0	0
1996	39	18	11	0	0 3FI2E55	3	2	0	5	0	0	0	0	0	0 6	50	3	15	14	0,6	110 NNKT	CBE)		21.6	0
1996	45	16	20	0	0 76101E1K	1	1	0	7	0	1	0	0	0	0 6	50	3	17	16	0,9	180 XB3M	CHP.		15	0
1996	41	2	107	0	0 6E2П1К1Л	2	6	1	0	0	1	0	0	0	0 6	50	3	23	28	0,8	300 XB3M	ВЛА		27	0
1996	42	2	121	0	0 3Е2П2Л1К2Б	2	3	2	2	0	1	0	0	0	0 15	50	3	23	24	0,7	270 XB3M	ВЛА)		3,7	0
1996	43	1	133	0	0 3Е2П2Л1К2Б	2	3	2	2	0	1	0	0	0	0 15	50	3	23	24	0,7	270 XB3M	ВЛА		4,5	0
1996	44	1	524	0	0 6E2K2Л	0	6	2	0	0	2	0	0	0	0 15	50	3	24	26	0,7	290 XB3M	ВЛА)		1 4	0
1996	44	7	73	0	0 4П3Л2E1K	4	2	3	0	0	1	0	0	0	0 16	50	3	23	24	0,8	280 NNKT	CBE)		1,4	0
1996	45	1	65	0	0 8E2K	0	8	0	0	0	2	0	0	0	0 15	50	3	23	24	0,6	230 XB3M	ВЛА		1,9	0
1996	45	4	120	0	0 4E3П1К1Л1Б	3	4	1	1	0	1	0	0	0	0 14	0	4	22	24	0,7	250 XB3M	ВЛА)		0,3	0
1996	45	11	136	0	0 7E2E1K	7	2	0	0	0	1	0	0	0	0 16	50	4	21	24	0,4	120 XB3M	ВЛА)		3,3	0
1996	45	12	41	0	0 5Е4П1Л	4	5	1	0	0	0	0	0	0	0 16	60	3	23	24	0,8	310 XB3M	ВЛА		4	0
1996	46	1	21	0	0 4ЕЗП1К1Л1Б	3	4	1	1	0	1	0	0	0	0 14	10	4	22	24	0,7	250 XB3M	ВЛА		4	0
1996	46	3	17	0	0 4E1П1К4Б	1	4	0	4	0	1	0	0	0	0 10	00	4	19	18	0,9	260 XB3M	ВЛА		3,3	0
1996	46	8	30	0	0 4E1П1К4Б	1	4	0	4	0	1	0	0	0	0 10	00	4	19	18	0,9	260 XB3M	ВЛА		0,6	0
1996	48	2	303	0	0 ЗЕ2П1Л4Б	2	3	1	4	0	0	0	0	0	0 10	00	4	17	16	0,7	150 XB3M	ВЛА		2,9	0
1996	49	21	223	0	0 5E2Л2П1К	2	5	2	0	0	1	0	0	0	0 16	50	4	22	28	0,8	310 XB3M	CHP.		1,4	0

Taxation characteristics

- T_1^{i} area of the *i*th forest compartment, hectare;
- T₂ⁱ slope exposure of the *i*th forest compartment (qualitative characteristics were replaced with quantitative ones, eastern slope 1, western 2, northern 3, southern 4, northeastern 5, northwestern 6, southeastern 7, southwestern 8);
- stand composition proportion of fir (T_3^i) , spruce (T_4^i) , larch (T_5^i) , birch (T_6^i) , aspen (T_7^i) , Siberian pine (T_8^i) and pine (T_9^i) among stands of *i*th forest compartment $(\sum_{j=3}^{9} T_j^i = 1, i = 1, ..., n)$
- T_{10}^{i} average age of stands of *i*th forest compartment, years;
- T_{11}^{i} growth class of the *i*th forest compartment;
- T_{12}^{i} average height of the *i*th forest compartment, m;
- T_{13}^{i} average diameter of the *i*th forest compartment, cm;
- T_{14}^{i} relative completeness of the forest stand of the *i*th forest compartment;
- T_{15}^{i} stock of stands of the *i*th forest compartment, m³/hectare;
- T_{16}^{i} soil moisture of the *i*th forest compartment;
- T_{17}^{i} mossiness of the *i*th forest compartment.

Bioclimatic characteristics*

- • $C1_{ti}^{i}$, where t = 1, 2, ..., T, j = 6, 7 soil temperature (0 10 cm underground) for June and July of the *i*th year, K;
- C2ⁱ, where t = 1, 2, ..., T maximum soil temperature (0 10 cm underground) in the winter months of the *i*th year, K;
- $C3_t^i$, where t = 1, 2, ..., T maximum snow depth of the *i*th year, m;
- C4ⁱ_{tj}, where t = 1, 2, ..., T, j = 5, 6, ..., 10 near surface air temperature for the period May October of the *i*th year, K;
- •C5_{*ij*}, where *t* = 1, 2, ..., *T*, *j* = 5, 6, ..., 9 total evaporation and transpiration for the period May-September of the *i*th year, kg/(m³*s);
- $C6_{ti}^{i}$, where t = 1, 2, ..., T, j = 5, 6, ..., 9 rainfall flux for the period May-September of the*i*th year, kg/(m³*s);
- C7^{*i*}_{*tj*}, where *t* = 1, 2, ..., *T*, *j* = 1, 2, ..., 12 soil moisture (0 10 cm underground) for the *j*th months of the *i*th year, %.

*The global climate database Land Data Assimilation System (FLDAS)

- n=15523 forest compartments $FS = \{FS_1, FS_2, ..., FS_i, ..., FS_n\}$
- $FS_i = \{T_1^{\ i}, ..., T_{17}^{\ i}, C1_{16}^{\ i}, C1_{17}^{\ i}, ..., C1_{76}^{\ i}, C1_{77}^{\ i}, C2_1^{\ i}, ..., C2_7^{\ i}, C3_1^{\ i}, ..., C3_7^{\ i}, C4_{15}^{\ i}, ..., C4_{110}^{\ i}, ..., C4_{75}^{\ i}, ..., C4_{75}^{\ i}, ..., C4_{710}^{\ i}, C5_{15}^{\ i}, ..., C5_{19}^{\ i}, ..., C5_{79}^{\ i}, C6_{15}^{\ i}, ..., C6_{19}^{\ i}, ..., C6_{75}^{\ i}, ..., C6_{79}^{\ i}, C7_{11}^{\ i}, ..., C7_{112}^{\ i}, ..., C7_{712}^{\ i}, Y_i\}$

17 input taxation characteristics, 217 bioclimatic characteristics

•
$$Y_i = \begin{cases} 1, Y1_i \ge K \text{ or } Y2_i > 0 \\ 0, \text{ otherwise} \end{cases}$$

• K is set by experts. For the considered ecosystem K = 25

Data classification problem for ecosystem behavior analysis

There is a dataset FS with dimension n = 15523 containing taxation and bioclimatic characteristics of forest compartments. One of the characteristics (Yi) determines the class of the object (presence or absence of an outbreak of the Siberian silk moth in a given area) and can take values from a fixed set {0, 1}. Based on the training sample, it is necessary to form a classification tree (decision tree) containing a set of logical conditions that allow for an arbitrary measurement *FS_i* from *FS* to indicate the quality class to which it may belong.

Computational Experiments

Pre-classification accuracy

Method	LR	KNN	RF	DT
Accuracy	0.523	0.631	0.913	0.949

- LR logistic regression;
- KNN K-nearest neighbors;
- RF random forest;
- DT decision tree.

The result of building a decision tree in Deductor

Computational Experiments

NՉ	The	NՉ	The			
	proportion of		proportion of			
	correctly		correctly			
	classified		classified			
	outbreaks		outbreaks			
1	0.97887	26	0.97917			
2	0.97936	27	0.97862			
3	0.97949	28	0.97836			
4	0.97904	29	0.97942			
•••	•••	30	0.97962			

Input characteristics, the significance of which more than 1%

	Signific	ance, %		Significance, %				
Feature	Max value	Min value	Feature	Max value	Min value			
C1 ₁₆	4.244	1.706	C6 ₂₆	8.052	7.607			
C1 ₁₇	3.17	3.069	C6 ₃₅	6.096	0.408			
C1 ₇₆	2.175	0.14	C6 ₃₉	8.831	5.413			
C1 ₇₇	3.703	1.401	C6 ₄₇	3.547	2.039			
C4 ₅₇	10.413	3.205	C6 ₅₈	8.525	0.256			
C4 ₆₇	6.129	6.129	C6 ₅₉	29.145	27.403			
C4 ₇₅	2.305	2.274	C6 ₆₉	5.796	0.875			
C5 ₃₅	2.478	0.663	C6 ₇₅	2.518	0.251			
C5 ₃₈	5.994	5.994	C7 ₄₇	2.865	2.398			
C5 ₄₇	3.975	1.802	C7 ₄₈	1.009	1.009			
C5 ₅₆	9.688	1.146	C7 ₅₃	2.456	2.456			
C5 ₅₈	7.062	6.341	C7 ₅₈	4.715	1.876			
C5 ₆₅	1.083	0.266	C7 ₆₄	3.239	2.84			
C5 ₆₆	2.019	2.019	C7 ₇₈	1.749	1.747			
C6 ₁₆	7.325	0.38	T ₈	1.048	0.087			

• n=15523 forest compartments $FS = \{FS_1, FS_2, ..., FS_i, ..., FS_n\}$

 $T_{1}, T_{3}, T_{4}, T_{5}, T_{6}, T_{7}, T_{8}, T_{9}, T_{10}, T_{12}, T_{13}, T_{14}, T_{15}, C1_{tj} (t = 1, 2, ..., T, j = 6, 7), C4_{tj} (t = 5, 6, T, j = 5, 6, 7, 8), C5_{tj} (t = 2, ..., 6, j = 5, 6, 7, 8), C6_{t} (t = 1, 2, ..., T, j = 5, 6, ..., 9), C7_{tj}^{i} (t = 1, 2, ..., T, j = 3, 4, ..., 10)$

13 input taxation characteristics, 137 bioclimatic characteristics

•
$$Y_i = \begin{cases} 1, Y1_i \ge K \text{ or } Y2_i > 0 \\ 0, \text{ otherwise} \end{cases}$$

• *K* is set by experts. For the considered ecosystem K = 25

Computational Experiments

N⁰	The proportion of correctly classified outbreaks
1	0.99777
2	0.99736
3	0.99849
•••	•••
28	0.99836
29	0.99842
30	0.99762

Conclusions

The work presents a method for preliminary processing of taxation and climatic characteristics of ecosystems. The application of this method made it possible to identify significant factors in the development of these ecosystems and to remove from consideration a large number of characteristics that were identified by experts as significant, but during the experiment did not have any effect on the classification accuracy. In addition, the paper considers various types of classification models. The results showed that the decision tree method allows solving the classification problem with high accuracy (0.95-1.00). Based on the classification with the help of models trained on the existing taxation and climatic characteristics of ecosystems, it is possible to further analyze and predict the behavior of these ecosystems.